
NASA / TM--2002-211582

Direct Optimal Control of Duffing Dynamics

Hayrani Oz
Ohio State University, Columbus, Ohio

John K. Ramsey
Glenn Research Center, Cleveland, Ohio

September 2002



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific ,and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at 301-621-0134

• Telephone the NASA Access Help Desk at
301-621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076



NASA/TM--2002-211582

Direct Optimal Control of Duffing Dynamics

Hayrani Oz

Ohio State University, Columbus, Ohio

John K. Ramsey
Glenn Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Glenn Research Center

September 2002



Trade names or manufacturers' names are used in this report for

identification only: This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22100

Available electronically at http: / / gltrs.grc.nasa.gov/GLTRS



Direct Optimal Control of Duffing Dynamics

Hayrani Oz

Ohio State University

Columbus, Ohio 43210

John K. Ramsey

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Summary

The "direct control method" is a novel concept that is an attractive alternative and competitor to the

differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear,

time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form
control laws based on minimization of a quadratic control pertbrmance measure. We present an

application of the direct method to the dynamics and optimal control of the Duffing system where the

control performance measure is not restricted to a quadratic form and hence may include a quartic energy

term. The results we present in this report also constitute further generalizations of our earlier work in

"direct optimal control methodology." The approach is demonstrated tbr the optimal control of the

Duffing equation with a softening nonlinear stiffness.

Introduction

The study of dynamical systems via differential equations of motion is referred to as an "indirect
method." On the other hand, the study of dynamic systems without any resort to or knowledge of

differential equations of motion is referred to as the "direct method." In the direct method, algebraic

equations of motion (AEM) take the place of the traditional differential equations of motion. The AEM

are obtained by using Hamilton's Law of Varying Action (HLVA) in conjunction with the assumed-time-

mode expansions of the generalized coordinates (ref. I). The constant unknown coefficients of the
assumed basis functions in time of thesc expansions become the generalized (algebraic) states of the

dynamic system. If there are control inputs on the dynamic system, they too can be expanded in terms of
assumed basis functions in time multiplied by constant unknown coefficients of expansion playing the

role of generalized (algebraic) control inputs.

By virtue of the assumed-time-mode (ATM) expansions of the generalized coordinates and the
controls, the variational work energy quantities in HLVA can be integrated a pnon m t,me over any time

interval. This provides a set of purely algebraic equations describing the motion in terms of the constant

unknown algebraic states and the algebraic control inputs for the time interval considered.

Presently, nonlinear optimal control problems are formulated in terms of differential equations. In

most cases, however, it is not possible to formulate an explicit, nonlinear optimal control law in this

setting. At best, the control law must be generated numerically at the expense of much computational

effort (ref. 2).
Instead of differential equations, the method applied in this report produces an explicit nonlinear

algebraic optimal control law by using algebraic equations of motion and an algebraic control

performance measure. The algebraic performance measure is again obtained by representing the

generalized coordinates and control inputs of a dynamic system in terms of assumed-time-modes

NASA/TM--2002-211582 1



expansionsandintroducingthemintoatime-integralcontrolperformancemeasure.Thecomplexities
associatedwithnonlinearsystemsarenolongeraseriousissuewiththisapproach,andthesolutionscan
beobtaineddirectlyinexplicitformwithrelativeease.

Bycontrast,inadifferentialsetting,variousstrategiesareattemptedtoavoidthecomplexities
anddifficultiescausedbythenonlinearities.Threesuchstrategiesare(1)linearizingthesystem,
(2)approximatingthesystemwitha largenumberof linearmodels,and(3)convertingthesystem
toalinearequivalentusinganonlinearcoordinatetransformation.All of them,however,involve
simplificationandapproximationof theoriginalsystem.Suchissuesareeliminatedattheoutsetwhen
thealgebraicequationsof motionareused.

IntheAEMsetting,thegeneralizedcoordinatesofasystemareexpandedintimeovertheinterval
(to,t i) in terms of admissible time basis functions. For n generalized coordinates qr(t), these expansions
can be written as

Nr

qr(t)= EZrk(t)O_rk r=1,2 ..... n

k=0

where A,-k (t) are admissible assumed time basis functions that are independent and continuous with

continuous derivatives over (to, t I), and or,./,,are unknown constant coefficients.

Hamilton's Law of Varying Action can be expressed as

l 1

i (ST +_)W)dt-Sq T aT

t'O i0

=0

where T is the kinetic energy, 8W is the variational work, and q is the n-dimensional generalized

coordinates vector. Once the assumed-time-modes expansions are invoked, each term becomes a known

function of time. This allows HLVA to be explicitly evaluated, thereby eliminating time and yielding a set

ofn algebraic equations of motion in which the coefficients c_,./,,become the unknown algebraic
coordinates or states.

Similar to the generalized coordinates, the inputs./_. (t) on a system can also be expressed in terms of
basis functions in time as

M r

f,.(t)= a k(t) rk
k-O

fl)

(2)

r = 1,2 ..... m (3)

where B,.k (t) are admissible assumed-time-modes for the inputs, and the constants 13,./,.become the

unknown algebraic input coordinates or input states (refs. I and 3 to 6). When substituted into HLVA,

equation (2), for the variational work of the inputs, expansion equation (3), also allows a priori explicit

integration in time. Then the resulting algebraic equations of motion are in terms of the unknown

coefficients ot,./_(algebraic states) and 13,./,.(algebraic inputs).

Analysis and control of dynamic systems via HLVA without resorting to differential equations of

motion is called the direct method. Response studies by the direct method were first demonstrated by

Bailey (refs. 7 to 9), and a direct control method (DCM) was first demonstrated by Oz and Raffle (ref. 10)

as an open-loop control. Oz and Adigiizei (refs. 3 and 5) and Adigfizel and Oz (refs. 4 and 6) extended the

DCM to include optimal feedback control of the algebraic states. Fuerst and Oz (ref. 1 I) demonstrated the

DCM for optimal nonlinear control of an aerodynamic body at a high angle of attack. The DCM applies

to time-variant, time-invariant, linear, and nonlinear systems with virtually the same simplicity and

generality. Since only algebraic equations are dealt with, the DCM promises to be an attractive competitor

and alternative to differential-equation-based methods.
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AEM for Duffing Dynamics

It proves convenient to express the HLVA in nondimensional time. For an arbitrary time interval of

motion (tl. to), the nondimensional time z is defined as

0z=t_t0 ' 0=tl_tO" 0<_T_I (4)

In terms of nondimensional time "t, the form of HLVA is

_0 (_)T +SWC +_)WNC +SWD) d'c-SqT Oq' 0 =0

where subscripts C, NC, and D denote the work of conservative, nonconservative, and damping forces,

respectively. A prime (') denotes the derivatives with respect to nondimensional time "_.Any control

inputs are to be included under the nonconservative work expression. By assuming the functional lbrms

of the energy-work expressions in terms of generalized coordinates, the general form of the AEM has

been derived in reference 1. Although tedious, their application to the Duffing dynamics is straight

forward to obtain the AEM for the Duffing system. The Duffing system that we consider is the classical

single-degree-of-freedom spring, mass, damper system with a harmonic external forcing function. The

nonlinearity is attributed to a quartic displacement term in the elastic potential energy of the system in

addition to the quadratic displacement term that produces the linear behavior. The damping is the result of

the usual linear viscous effect.

The kinetic energy and conservative work expressions in dimensional time that are required by the

HLVA for the single-degree-of-freedom Duffing system in terms of the generalized coordinate q are

1 .'_ oqT + + lk4q4T =-mq- -- = m/I V =-W C = 2V 4V = 1 .,
2 _/! 2 k2q- -

where 2V and 4V are the potential energies corresponding to quadratic and quartic terms in the generalized

coordinate q. m, k 2, and k4 are the mass and stiffness coefficients, respectively. Note that the quartic term

will produce all the nonlinearities in the sequel. The other variational work expressions are the result of

the viscous damping tbrce and the external forcing function:

5W D : -Cil_Xt, _)WNc = _)Wf = f _)q

where c is the damping coefficient and[is the external force along q.
Next we introduce an assumed-time-modes expansion for (the single degree of freedom) q in terms of

the nondimensional time in the form

q(_)= AO(I:)x 0 +A(_)ot ,40 =[AI0(T ) A I1('_)], A =[AI2('_ ) AI3('_)...AIN(Z)]

x0=[o, 00tl]T:[q(0) q'(0)] T, or:lot 20t3...OtN] T

where x0 is the two-component initial state vector of initial displacement and initial velocity and _ is the

(N- 2)-component vector of generalized unknown constant algebraic states. Furthermore, the assumed-
time-mode functions have continuous derivatives with respect to time and satisfy certain boundary

conditions in time:

Aik (0) = 5jk j,k=0 ..... N

(5)

(6)

(7)

(8)

(9)
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wherethesuperscriptjdenotesthe.jthorderderivativewithrespecttonondimensionaltimeand6i/,-is the
Kroneckerdeltafunction.Theoretically, the choices for the assumed time modes are not unique and we

are not restricted to the form given in equation (9); however, we have been using it with excellent facility

in our work to date. Furthermore, the form we choose to use is simple enough and the time boundary

conditions can be satisfied easily, which leads to physically meaningful interpretations of the algebraic

states. Specifically, with the boundary conditions of equation (9), each generalized algebraic state satisfies

C_k=qk('t'=O), OtO=q(O ), Oq=q'(O) k=O ..... N (10)

where the superscript k denotes the k th order nondimensional time derivative. Note that or0 and cq are the

displacement and velocity initial conditions that are typically identified as time-dependent state variables

in a differential equation setting. On the other hand, for or/,., k > 2, acceleration and higher order

derivatives of generalized coordinates qualify as generalized (algebraic) states in the direct methodology.

By introducing the assumed-time-mode expansion equation (8) tbr q into the kinetic energy, potential

energy, and other work expressions, we transform to the algebraic states ot as the unknowns. Then,

utilizing the form of the HLVA given by equation (5) in nondimensional time x, we perform the required

variations on o_/,(k > 2) as the unknowns to obtain in the following form the AEM for the Duffing system:

[PL + PN (Xo)] _ +[RL + RN(XO)]xo + U=O (1 I)

where N and the subscript N denote terms due to nonlinearities (quartic term) in the potential energy; the

term Qf due to the external forcing function has been included in the function N for notational

convenience without the loss of generality; and the subscript L denotes terms due to linearities in the

potential energy (quadratic term), kinetic energy, and damping force. For control purposes, it is

convenient to write the AEM equation (1 I ) by separating into alternate tbrms the linear and nonlinear

dynamics terms:

Pot+Rx0+N=O, P=PL+P N, R=RL+R N

PL_ + RLXo +ff]=O, _= PNC_ + RNXo + N (12)

The explicit expressions for the various matrices in the AEM equation (12) for the Duffing dynamics for

simple power series in time expansions as ATM's are given in the appendix. The form of the AEM tbr the

Duffing dynamics equations (12) conforms to the general form of the AEM stated for general dynamic

systems in references 1 and 3 to 6.

The solution procedure for the response problem via the AEM consists of solving the algebraic

equations ( 11 ) and (12) for the unknown constants ot and using these constants to evaluate the assumed-

time-mode expansions of the generalized coordinates, equation (8) lbr 0 < "c < I corresponding to any

time t in the interval (to, tl ). It must be emphasized that the above AEM pertain to any time interval

(t0, tl ), which we refer to as thc transition interval. However, one may also consider the transition interval

as a small time step, and equations (11) and (12) can be marched in time from one interval to the next.

This procedure requires the use of continuity equations of the tbrm

j+'l= jl (13)

where 0") and (3"+I ) represent two subsequent time intervals. The continuity matrices So and S are deduced

tbr any specific choice of the ATM expansions by keeping in mind that the generalized velocity and

displacement at the end of time interval (/') at "c = I are the initial velocity and displacement for the next

time interval _/+ I ) at "c - 0.
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Assumed-Time-Mode Expansions of (Control) Inputs

The control inputs on a dynamic system are external loads designed to satisfy certain performance

criteria. Similar to the generalized coordinates, the control input functions can also be represented as

expansions in assumed time modes. Denoting the control forces as f C (t) for m-inputs, the control input

expansions can be written as

M n,

ft!'(t) : E Brk(t)_rk = Br(')_r

k=0

r= 1,2 ..... m (14)

where B,./,. (t) are admissible assumed time modes fi_r the control inputs and [3,./,.are constant unknown

algebraic control input coordinates that will be determined to meet the control objectives. In

equation (14), Br (t) and [3r are Mr-component vectors of ATM and algebraic input coordinates,

respectively, with obvious definitions. For all hi-inputs in matrix form, one has

fc (t) = B(t)_, fc(t) = [fl (t)... fm (t)] T

[ TT T] TB(t)= Block DiagBr(t ), _: [31_2 ""_,,, r= l ..... m 05)

The control inputs can be added to the AEM simply by writing their variational work and transforming to

the domain of algebraic states or:

aWcont = fcT_)q : f,'T ASot = [jT BT(.c)A(_)SC t

in which transtbrmation to nondimensional time is also assumed to be done implicitly. Adding this to the

HLVA equation (5) and taking the time integrals yields the additional control term for the AEM

equation ( I 1 ):

Pc_ + Rx 0 + N + Q_3 = 0 (l 6)

where

Q= _ AT Bdz (17)

In equation (16), ot constitutes the algebraic state vector to be controlled by the algebraic control vector 13.

In general, the assumed time modes Br/,- for the inputs can be taken to be the same as the assumed

time modes ,46 for the generalized coordinate(s). However, again, if small time-step transition intervals

are to be used in a time-marching scheme, a simple choice is one in which Mr = 0, k - 0, and Bpg(t) = I

(r- 1,2 ..... m). That is, each input is a single-term expansion with a constant assumed-time-mode shape

over each interval 0 _<"t < I. This is indeed very well suitable for (digital) implementation of the control

inputs when each control coordinate 13r/,-corresponds to the value of the physical control input. This

particular ATM for controls literally corresponds to a zero-order hold in sampled data systems. Indeed,

the situation does not need to be any more complicated. Simplicity is sufficient and leads to an elegant

implementation form tbr control inputs with the direct control methodology.
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Whatremainsisobtainingthealgebraiccontrolinputs[_ to satisfy the desired controller performance

criteria. Possibly one would be interested in finding the control inputs [3 as functions of the algebraic

states ot that would by definition represent state feedback control. An explicit nonlinear feedback control

solution for the nonlinear dynamics represented by the AEM (eq. (16)) is given in reference 4 by using

the quadratic regulator performance measure typically used in optimal control theory. Herein, we present

a more general formalism for deriving an optimal nonlinear control law that allows a general form for the

control design performance index (CDPI). In particular, the general approach can accommodate quartic

terms in the CDPI in addition to traditional quadratic terms in system states. This is particularly

applicable to the Duffing system that has a quartic energy term which leads to nonlinear behavior.

The direct optimal control solution given in the next section is applicable to a multiple-degrees-of-

freedom, multiple-input system in which q represents an n-component vector of generalized coordinates.

Direct Optimal Nonlinear Control

In the interest of being brief and because of limited space, we shall present only the final form of the

optimal nonlinear control law as the reader can easily verify the omitted details. The results presented in

this section represent a more general tbrm of the specific results presented in reference 4.

Consider a positive definite CDPI of the general functional form that is separated in state and control
variables:

1,, [ )]Jt=2_Jo[ls(q, il)] + lc(f c dl=Js+J c

where subscripts s and c indicate the positive semidefinite state and positive definite control dependent

terms of the CDPI. The CDPI can be transformed to the domain of the AEM by introducing the ATM

expansions shown in equations (8) and (15) for the generalized coordinates and the input functions.

However, in equations (8) tbr n-coordinates, the row index Art- (I:) on the ATM's would run as

r -- ! ..... n. In this transformation, since the time dependence of the terms is known by virtue of the

ATM, the time integrals in the CDPI can be evaluated a priori to yield the equivalent algebraic
performance criterion

J,(-,x0)+

The nonlinear optimal control problem is

1. Minimize J(_,[3)

2. Subject to the AEM

or equivalently to

C( ot, _ ) = Po_ + Rx 0 + N + Q_ = 0

C(o_, _) = PL(_ + RLX 0 + _+ Q_ = 0

where the unknowns are Ix and [3. The optimality problem can be solved via the standard Lagrange

multiplier method. Introducing the augmented algebraic CDPI

J. (ot,13) = JCot,[3) + v TCCcx+_)

(18)

(19)

(2o)
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wherev is thevectorof Lagrangemultipliers,thenecessaryconditionsforoptimalityare

_J"-0, _Ja=o _)Ja=0
_c_ 013 Ov

(21)

which yield the solution for the optimal control:

_Jc ocTI_cT]-IOJs (22)

it should be noted that the optimal solution is valid for any arbitrary transition interval (to, tl ) of the

motion, provided that admissible ATM expansions exist for that transition interval. Hence, with this

caveat, so far nothing is implied by equation (22) regarding the smallness of the transition interval (to, t I).

On the other hand, as noted previously, in practice one can also consider a time-marching approach in

which each small time step can be taken to be the transition interval (to, tl ). In this case, the CDPI

becomes a local performance measure optimized for the current time step. One can take to - Ik-I and

t 1 = t/,- for a small k th time step along the global time axis and invoke continuity conditions on the system

states from one step to the next time step to study the system for arbitrarily long durations. Typical simple

power series in time can be utilized as ATM's with such an approach and with this perspective, control

inputs can be taken as zeroth-order expansions in time. These expansions lead to zero-order hold inputs,

thus making the process attractive for digital implementation. Indeed, we have used this perspective in

our work to date on this subject. The explicit form of nonlinear control laws with quadratic CDPI's

employed as local performance measures for each time step are given in references 4 and 6 with

illustrative examples.
On the other hand, one can also preserve the global perspective on the CDPI for an arbitrarily long

transition interval (t0, II ) (infinite horizon control) while the system and control dynamics, and hence

ATM expansions, are considered over small (local) time-finite elements i along the global time axis

(to, tl ). In this case, it can be shown that the optimal control [_ at any current k th small time step within an

arbitrarily long transition interval (to, tl) can be obtained from equation (22) in the form

_- ,.__, ),.JL t );j
(23)

where i denotes all the previous time steps starling from the initial time to. In equation (23), the control

input [_ for the current k th time step utilizes the history of the control inputs, system dynamics, and

performance measure up to the current time. Thus, a simple power series form of ATM's for generalized
coordinates and zeroth-order ATM expansions for controls can still be utilized locally while a global

CDPI is maintained. Full implications of this solution remain to be studied yet.
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Illustrative Examples

Consider the single-degree-of-freedom Duffing dynamics with a strong nonlinearity described by

//+ 1692q 2 - 200q 3 = f(t) + fc(t)

The system has unstable saddle points at +0.8885. For the forced system, taker(t) = 20 cos(17t) and

.l c denotes the single control input. CDPI reflects a measure of the total potential energy of the system

and hence includes a quartic penalty term:

Jt = l ftl[Wqq 2+ W@ 2+ %_q4 + fcT(t)RffCT(t)ldt2 ato - "

where Wq, Wit, %,_ are positive semidefinite state weightings and Rfis the positive definite control

weighting. For simplicity, cross products between the displacements and velocities are not considered.

We use equation (23) to obtain the optimal controls and hence optimize the global CDPI for an

infinite horizon control problem. For system and controller dynamics, we take local time steps of

0.004 sec. The generalized coordinate q is represented as a four-term (N = 3 in eq. (8)) simple power

series in time ATM expansion; thus, ot2 and ot3 are the unknown algebraic states. A single-term (M = O)

ATM expansion (zero-order hold) is considered for the control input in equation ( 14); therefore, there is

single algebraic control input.

We considered initial conditions in the unstable region of the phase plane beyond the saddle point;

thus, the uncontrolled system is unstable. Figures 1 to 3 have initial displacements of 0.89 and initial

velocities of O. 1. Figures 1 and 2 show the controlled response for the unforced and forced Duffing

oscillator with quadratic displacement weighting of 1.5, velocity weighting of0.O015, and control

weighting of 9x10 -7 in the CDPI; no weighting on the quartic displacement is considered. Figure 3 shows

the controlled response of the unforced oscillator with the same CDPI weightings as those for figure I,

but a quartic displacement weighting of 1.0 is also included. Finally, figure 4 shows the controlled

response of the unforced system subjected to unstable initial displacement of 2.0 and initial velocity of

1.0 with CDPI weightings of O.9 for the quadratic displacement, 0.002 for the velocity, 18.0 for the

quartic displacement, and 9x10 -8 tbr the control.

Concluding Remarks

An essential feature of the direct optimal control method is the reduction of the conventional

variational optimal control problem to an equivalent algebraic optimality problem from which the

nonlinear optimal feedback laws are obtained in closed form and are readily applicable to simulate the

closed-loop system. Nonlinearity is not a challenging issue with the direct method as it may have been

with customary indirect approaches via differential equations. Furthermore, the direct method treats the

time-invariant and time-varying systems alike, and the form of the technique has the potential to solve a

larger class of control problems with the same simplicity than would be possible using traditional

variational techniques. A case in point is the direct optimal regulator control of the Duffing dynamics
illustrated herein.
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AppendixmAlgebraic Equations of Motion for Forced Duffing System

"_ 3 A'
With the assumed time modes taken as simple power series in time AO = [ 1 "r], A = [z-z ..._ ] tbr the

single-degree-of-freedom Duffing dynamics, one has (eqs. (1 I), (12), (16), (I 7))

[PL + PN(X0)] °t +[RL + RN(xO)] xO + N +QB:0

The elements of the required matrices are

PL/I-
m i(l-i) k-, ! c i

02 i+j-I - i+j+l Oi+j
i,j=2,3 ..... N

cs-I 1
Rt.ls - - k_

0j+! -j+s
s = 1,2 (column index)

I
QJK - . k = O, 1..... M I

j+k+l

I =i-l(column index), J : j-l(row index), K = k+l(column index)

[_ 2¢t0°q or/RN_,. =-2k 4 -I 4i+s+l i+s+2

i= 2 ..... N: s : 1,2(column index), I :i-l(row index)

1c_ v - _XoC_l+_ai
PNu =-6k4 i+j+l i+j+2 i+j+3

i,j=2,3 ..... N; l=i- l(row index): J=j-I(columnindex)

N : - 4V3 - 4V4ot + Qf

4 2 = 2k4otT[ .t_0 q
V3(O_ 'x0)K Li+j+k+l i+j+k+2

i,j,k=2,3 ..... N; K=k-1

for each k, run i,j : row, column indices, and form the scalar product oft_T[k,c_o, Otl]!it_, where [k,o_), Ctl]

is the term in [ ] above.

4V4(Ct)KL=k4 ctT i+j+k+l+l ct

i,j = 2,3 ..... N(row,column), k,l = 2,3 ..... N(row,column); K=k-I,L=I-I

for each k and I, form the scalar product ctTlk,II 6ct by running the indices i,j to generate the matrix in

J } Put each scalar as the kl element of the matrix [ ]k/where k is the row and / is the column index.
I
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rl
Qt) =0J0"ckf(_)d'c, k=2,3 ..... N;

f('t) = A£2 cos f2(t 0 + 01:)

K = k - 1 (row index)

wheref('_) is the forcing on the Duffing system with angular frequency £2 and its inclusion under the

N term is merely for compactness and is of no consequence. Since.f(1:) is not a function of or, the Jacobian

of N that will arise in applying the optimal control solution equation (22) or equation (23) is

;1 [o0 o,]zN-- (z;) ---4k4
Lo3(zj J ' RK r+j+k+l r+j+k+2

(for each r,k; run j as a column index of a row matrix.)

-3k4otT[ 1 ]C_i+j+k+r+l

(for each r,k; run i,j as row, column indices to form the scalar product c_T[ ]cx)

i,j,r,k=2 ..... N; R=r-I,K=k-!

The continuity matrices So and S of equation (13), corresponding to the simple power series in time

expansion, are

SO = Block Diag S= Block Diag 3 ... N

NASA/TM 2002-211582 10
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Figure 1.--Control of unforced Duffing dynamics with
quadratic regulator. Initial displacement, 0.89; initial

velocity, 0.1; quadratic displacement weighting, 1.5;

velocity weighting, 0.0015; and control weighting,
9×10-7.
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Figure 2.--Contrel of forced Duffing dynamics with
quadratic regulator. Initial displacement,0.89; initial

velocity, 0.1; quadratic displacement weighting, 1.5;
velocity weighting, 0.0015; and control weighting,
9×10-7.
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